Format

Send to

Choose Destination
See comment in PubMed Commons below
Genomics. 2006 Jan;87(1):173-80. Epub 2005 Nov 28.

Annotating nonspecific SAGE tags with microarray data.

Author information

1
Center for Functional Genomics, ENH Research Institute, Northwestern University, Chicago, IL 60611, USA.

Abstract

SAGE (serial analysis of gene expression) detects transcripts by extracting short tags from the transcripts. Because of the limited length, many SAGE tags are shared by transcripts from different genes. Relying on sequence information in the general gene expression database has limited power to solve this problem due to the highly heterogeneous nature of the deposited sequences. Considering that the complexity of gene expression at a single tissue level should be much simpler than that in the general expression database, we reasoned that by restricting gene expression to tissue level, the accuracy of gene annotation for the nonspecific SAGE tags should be significantly improved. To test the idea, we developed a tissue-specific SAGE annotation database based on microarray data (). This database contains microarray expression information represented as UniGene clusters for 73 normal human tissues and 18 cancer tissues and cell lines. The nonspecific SAGE tag is first matched to the database by the same tissue type used by both SAGE and microarray analysis; then the multiple UniGene clusters assigned to the nonspecific SAGE tag are searched in the database under the matched tissue type. The UniGene cluster presented solely or at higher expression levels in the database is annotated to represent the specific gene for the nonspecific SAGE tags. The accuracy of gene annotation by this database was largely confirmed by experimental data. Our study shows that microarray data provide a useful source for annotating the nonspecific SAGE tags.

PMID:
16314072
DOI:
10.1016/j.ygeno.2005.08.014
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center