Format

Send to

Choose Destination
See comment in PubMed Commons below
Biol Psychiatry. 2005 Nov 15;58(10):763-9.

Blunted activation in orbitofrontal cortex during mania: a functional magnetic resonance imaging study.

Author information

1
Department of Psychiatry, Los Angeles, California, USA. laltshuler@mednet.ucla.edu

Abstract

BACKGROUND:

Patients with bipolar disorder have been reported to have abnormal cortical function during mania. In this study, we sought to investigate neural activity in the frontal lobe during mania, using functional magnetic resonance imaging (fMRI). Specifically, we sought to evaluate activation in the lateral orbitofrontal cortex, a brain region that is normally activated during activities that require response inhibition.

METHODS:

Eleven manic subjects and 13 control subjects underwent fMRI while performing the Go-NoGo task, a neuropsychological paradigm known to activate the orbitofrontal cortex in normal subjects. Patterns of whole-brain activation during fMRI scanning were determined with statistical parametric mapping. Contrasts were made for each subject for the NoGo minus Go conditions. Contrasts were used in a second-level analysis with subject as a random factor.

RESULTS:

Functional MRI data revealed robust activation of the right orbitofrontal cortex (Brodmann's area [BA] 47) in control subjects but not in manic subjects. Random-effects analyses demonstrated significantly less magnitude in signal intensity in the right lateral orbitofrontal cortex (BA 47), right hippocampus, and left cingulate (BA 24) in manic compared with control subjects.

CONCLUSIONS:

Mania is associated with a significant attenuation of task-related activation of right lateral orbitofrontal function. This lack of activation of a brain region that is usually involved in suppression of responses might account for some of the disinhibition seen in mania. In addition, hippocampal and cingulate activation seem to be decreased. The relationship between this reduced function and the symptoms of mania remain to be further explored.

PMID:
16310510
DOI:
10.1016/j.biopsych.2005.09.012
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center