Send to

Choose Destination
Antimicrob Agents Chemother. 2005 Dec;49(12):4884-94.

Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones.

Author information

Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France.


Human immunodeficiency virus type I reverse transcriptase (RT) possesses distinct DNA polymerase and RNase H sites, whereas integrase (IN) uses the same active site to perform 3'-end processing and strand transfer of the proviral DNA. These four enzymatic activities are essential for viral replication and require metal ions. Two Mg2+ ions are present in the RT polymerase site, and one or two Mg2+ ions are required for the catalytic activities of RNase H and IN. We tested the possibility of inhibition of the RT polymerase and RNase H as well as the IN 3'-end processing and transfer activities of purified enzymes by a series of 3,7-dihydroxytropolones designed to target two Mg2+ ions separated by approximately 3.7 angstroms. The RT polymerase and IN 3' processing and strand transfer activities were inhibited at submicromolar concentrations, while the RNase H activity was inhibited in the low micromolar range. In all cases, the lack of inhibition by tropolones and O-methylated 3,7-dihydroxytropolones was consistent with the active molecules binding the metal ions in the active site. In addition, inhibition of the DNA polymerase activity was shown to depend on the Mg2+ concentration. Furthermore, selective inhibitors were identified for several of the activities tested, leaving some potential for design of improved inhibitors. However, all tested compounds exhibited cellular toxicity that presently limits their applications.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center