Format

Send to

Choose Destination
See comment in PubMed Commons below
J Med Chem. 2005 Dec 1;48(24):7733-49.

Novel lavendamycin analogues as antitumor agents: synthesis, in vitro cytotoxicity, structure-metabolism, and computational molecular modeling studies with NAD(P)H:quinone oxidoreductase 1.

Author information

1
Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA.

Abstract

Novel lavendamycin analogues with various substituents were synthesized and evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor agents. Pictet-Spengler condensation of quinoline- or quninoline-5,8-dione aldehydes with tryptamine or tryptophans yielded the lavendamycins. Metabolism studies with recombinant human NQO1 revealed that addition of NH2 and CH2OH groups at the quinolinedione-7-position and indolopyridine-2'-position had the greatest positive impact on substrate specificity. The best and poorest substrates were 37 (2'-CH2OH-7-NH2 derivative) and 31 (2'-CONH2-7-NHCOC3H7-n derivative) with reduction rates of 263 +/- 30 and 0.1 +/- 0.1 micromol/min/mg NQO1, respectively. Cytotoxicity toward human colon adenocarcinoma cells was determined for the lavendamycins. The best substrates for NQO1 were also the most selectively toxic to the NQO1-rich BE-NQ cells compared to NQO1-deficient BE-WT cells with 37 as the most selective. Molecular docking supported a model in which the best substrates were capable of efficient hydrogen-bonding interactions with key residues of the active site along with hydride ion reception.

PMID:
16302813
DOI:
10.1021/jm050758z
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center