Format

Send to

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2005 Dec 15;39(12):1629-37. Epub 2005 Sep 8.

Low UVA doses activate the transcription factor NFAT in human fibroblasts by a calcium-calcineurin pathway.

Author information

1
Laboratoire de Biochimie EA 2087 and INSERM-ERI 12, CHU Amiens, Hôpital Nord, Place Victor Pauchet, 80054 Amiens Cedex 1, France. maziere.cecile@chu-amiens.fr

Abstract

UVA radiation induces an inflammatory response as observed in erythema, and the cytokine genes involved in this response are under the control of the transcription factor NFAT (nuclear factor of activated T lymphocytes). The effects of UVA on NFAT DNA binding activity were investigated in cultured human fibroblasts. A dose-dependent increase was observed within the range of 0.6-4.5 J/cm2 UVA. Beyond this value, the activity decreased and a value of 60% of control was found at 13.5 J/cm2. The enhancement of NFAT activity was transient and peaked 45 min after irradiation. Furthermore, immunoblot analysis demonstrated a nuclear translocation of NFAT under low UVA doses. Concomitantly, as assessed by the fluorescent probe Fluo3, UVA induced an increase in intracellular free calcium, with a maximum increase found at 9 J/cm2. The UVA-induced activation of NFAT was prevented by the intracellular calcium trapping drug BAPTA, whereas the extracellular calcium chelator EGTA had no significant effect. In addition, the calcineurin inhibitors cyclosporin A and FK506 both prevented the UVA-induced NFAT activation. Furthermore, the antioxidant vitamin E prevented the UVA-induced increase in both intracellular free calcium and NFAT binding activity. Finally, the cytotoxicity of UVA was enhanced in the presence of the inhibitors cyclosporin and FK506, suggesting that the activation of NFAT might play a protective role after the UVA-induced oxidative stress. These results demonstrate that UVA activates the calcium-calcineurin signaling pathway of NFAT activation, that the calcium ions are mainly released from intracellular stores, and that the increase in calcium is, at least partially, due to the oxidative stress generated under UVA. Because NFAT regulates several genes implicated in the inflammatory response, the enhancement of NFAT activity by low UVA doses might be interpreted in view of the proinflammatory action of solar radiation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center