Format

Send to

Choose Destination
Biochem Pharmacol. 2005 Dec 19;71(1-2):163-72. Epub 2005 Nov 18.

Molecular cloning and radioligand binding characterization of the chemokine receptor CCR5 from rhesus macaque and human.

Author information

1
Discovery Biology, Pfizer Global Research and Development, Sandwich Laboratories, Sandwich, Kent. CT13 9NJ UK. carolyn.napier@pfizer.com

Abstract

The aim of this study was to determine if macaque represents a suitable species for the pre-clinical evaluation of novel CCR5 antagonists, such as maraviroc (UK-427,857). To do this we cloned and expressed CCR5 from rhesus macaque and compared the binding properties of [125I]-MIP-1beta and [3H]-maraviroc with human recombinant CCR5. [125I]-MIP-1beta bound with similar high affinity to CCR5 from macaque (K(d) = 0.24 +/- 0.05 nM) and human (K(d) = 0.23 +/- 0.05 nM) and with similar kinetic properties. In competition binding studies the affinity of a range of human chemokines for macaque CCR5 was also similar to human CCR5. Maraviroc inhibited binding of [125I]-MIP-1beta to CCR5 from macaque and human with similar potency (IC50 = 17.50 +/- 1.24 nM and 7.18 +/- 0.93 nM, respectively) and antagonised MIP-1beta induced intracellular calcium release mediated through CCR5 from macaque and human with similar potency (IC50 = 17.50 +/- 3.30 nM and 12.07 +/- 1.89, respectively). [3H]-maraviroc bound with high affinity to CCR5 from macaque (K(d) = 1.36+/-0.07 nM) and human (K(d) = 0.86 +/- 0.08 nM), but was found to dissociate approximately 10-fold more quickly from macaque CCR5. However, as with the human receptor, maraviroc was shown to be a high affinity, potent functional antagonist of macaque CCR5 thereby indicating that the macaque should be a suitable species in which to evaluate the pharmacology, safety and potential mechanism-related toxicology of novel CCR5 antagonists.

PMID:
16298345
DOI:
10.1016/j.bcp.2005.10.024
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center