Send to

Choose Destination
Carbohydr Res. 2006 Jan 16;341(1):130-7. Epub 2005 Nov 17.

Damaged starch characterisation by ultracentrifugation.

Author information

Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK.


The relative molecular size distributions of a selection of starches (waxy maize, pea and maize) that had received differing amounts of damage from ball milling (as quantified by susceptibility to alpha-amylase) were compared using analytical ultracentrifugation. Starch samples were solubilised in 90% dimethyl sulfoxide, and relative size distributions were determined in terms of the apparent distribution of sedimentation coefficients g*(s) versus s(20,w). For comparison purposes, the sedimentation coefficients were normalised to standard conditions of density and viscosity of water at 20 degrees C, and measurements were made with a standard starch loading concentration of 8 mg/mL. The modal molecular size of the native unmilled alpha-glucans were found to be approximately 50S, 51S and 79S for the waxy maize, pea and maize amylopectin molecules, respectively, whilst the pea and maize amylose modal molecular sizes were approximately 14S and approximately 12S, respectively. As the amount of damaged starch increased, the amylopectin molecules were eventually fragmented, and several components appeared, with the smallest fractions approaching the sedimentation coefficient values of amylose. For the waxy maize starch, the 50S material (amylopectin) was gradually converted to 14S, and the degradation process included the appearance of 24S material. For the pea starch, the situation was more complicated than the waxy maize due to the presence of amylose. As the amylopectin molecules (51S) were depolymerised by damage within this starch, low-molecular-weight fragments added to the proportion of the amylose fraction (14S)--although tending towards the high-molecular-weight region of this fraction. As normal maize starch was progressively damaged, a greater number of fragments appeared to be generated compared to the other two starches. Here, the 79S amylopectin peak (native starch) was gradually converted into 61 and 46S material and eventually to 11S material with a molecular size comparable to amylose. Amylose did not appear to be degraded, implying that all the damage was focused on the amylopectin fraction in all three cases. Specific differences in the damage profiles for the pea and maize starches may reflect the effect of lipid-complexed amylose in the maize starch.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center