Format

Send to

Choose Destination
See comment in PubMed Commons below
Chembiochem. 2006 Jan;7(1):174-80.

Synthesis and two-photon photolysis of 6-(ortho-nitroveratryl)-caged IP3 in living cells.

Author information

1
Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.

Abstract

The synthesis of a photolabile derivative of inositol-1,4,5-trisphosphate (IP3) is described. This new caged second messenger (6-ortho-nitroveratryl)-IP3 (6-NV-IP3) has an extinction coefficient of 5000 M(-1) cm(-1) at 350 nm, and a quantum yield of photolysis of 0.12. Therefore, 6-NV-IP3 is photolyzed with UV light about three times more efficiently than the widely used P(4(5))-1-(2-nitrophenyl)ethyl-caged IP3 (NPE-IP3). 6-NV-IP3 has a two-photon cross-section of about 0.035 GM at 730 nm. This absorbance is sufficiently large for effective two-photon excitation in living cells at modest power levels. Using near-IR light (5 mW, 710 nm, 80 MHz, pulse-width 70 fs), we produced focal bursts of IP3 in HeLa cells, as revealed by laser-scanning confocal imaging of intracellular Ca2+ concentrations. Therefore, 6-NV-IP3 can be used for efficient, subcellular photorelease of IP3, not only in cultured cells but also, potentially, in vivo. It is in the latter situation that two-photon photolysis should reveal its true forte.

PMID:
16292788
DOI:
10.1002/cbic.200500345
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center