Format

Send to

Choose Destination
Nature. 2005 Nov 17;438(7066):374-8.

A histone H3 methyltransferase controls epigenetic events required for meiotic prophase.

Author information

1
Department of Molecular Embryology, Research Institute, Osaka Medical Center for Maternal and Child Health, Murodo-cho 840, Izumi, Osaka 594-1101, Japan.

Abstract

Epigenetic modifications of histones regulate gene expression and chromatin structure. Here we show that Meisetz (meiosis-induced factor containing a PR/SET domain and zinc-finger motif) is a histone methyltransferase that is important for the progression of early meiotic prophase. Meisetz transcripts are detected only in germ cells entering meiotic prophase in female fetal gonads and in postnatal testis. Notably, Meisetz has catalytic activity for trimethylation, but not mono- or dimethylation, of lysine 4 of histone H3, and a transactivation activity that depends on its methylation activity. Mice in which the Meisetz gene is disrupted show sterility in both sexes due to severe impairment of the double-stranded break repair pathway, deficient pairing of homologous chromosomes and impaired sex body formation. In Meisetz-deficient testis, trimethylation of lysine 4 of histone H3 is attenuated and meiotic gene transcription is altered. These findings indicate that meiosis-specific epigenetic events in mammals are crucial for proper meiotic progression.

PMID:
16292313
DOI:
10.1038/nature04112
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center