Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2005 Nov 15;65(22):10145-8.

Efficient deletion of normal Brca2-deficient intestinal epithelium by poly(ADP-ribose) polymerase inhibition models potential prophylactic therapy.

Author information

1
School of Bioscience, Cardiff University, Cardiff, United Kingdom.

Erratum in

  • Cancer Res. 2006 Jan 1;66(1):599.

Abstract

The genes encoding the BRCA1 and BRCA2 tumor suppressors are the most commonly mutated in human familial breast cancers. Both have separate roles in the maintenance of genomic stability through involvement in homologous recombination, an error-free process enabling cells to repair DNA double-strand breaks. We have previously shown that cre-mediated conditional deletion of Brca2 within the mouse small intestine sensitizes the tissue to DNA damage. Eventually, the tissue repopulates via stem cells in which recombination at the floxed Brca2 allele has not taken place. In this study, we have treated Brca2-deficient small intestine with a potent small-molecule inhibitor of poly(ADP-ribose) polymerase 1 (PARP1), an enzyme predominantly involved in the recognition of DNA single-strand breaks. Brca2 deficiency rendered otherwise normal cells exquisitely sensitive to PARP inhibition, resulting in very high levels of apoptosis as early as 6 hours after treatment, with evidence for repopulation of the tissue at 12 hours. Furthermore, the intestines of animals treated with serial injections of the inhibitor repopulated very rapidly in comparison with those from untreated mice. Our results represent the first in vivo demonstration that inhibition of PARP1 activity confers exquisite sensitivity to death in physiologically normal Brca2-deficient cells, suggesting that such a regimen may be extremely potent prophylactically in women heterozygous for the BRCA2 gene, as well as against established tumors lacking functional BRCA2.

PMID:
16287996
DOI:
10.1158/0008-5472.CAN-05-1186
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center