Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2005 Dec;139(4):2006-16. Epub 2005 Nov 11.

Ecotype allelic variation in C-to-U editing extent of a mitochondrial transcript identifies RNA-editing quantitative trait loci in Arabidopsis.

Author information

1
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.

Abstract

In higher plants, RNA editing is a posttranscriptional process that converts C to U in organelle mRNAs. Although RNA editing in mitochondria occurs much more frequently than in chloroplasts, editing of exogenously supplied RNA substrates in vitro and in organello has shown that editing in the two organelles shares some common features. In particular, the 20 nucleotides upstream of the editing site play an important role in specifying the C to be edited. Biochemical approaches have allowed the identification of features of cis-sequences necessary for RNA editing to occur, but have failed to identify any of the components of the mitochondrial editing machinery. In order to implement a genetic approach for identification of editing factors, we have identified a polymorphism in the editing efficiency of a mitochondrial site between two ecotypes of Arabidopsis (Arabidopsis thaliana), Columbia (Col) and Landsberg erecta (Ler). In rosette leaves, an editing site within the ccb206 mitochondrial gene is more highly edited in Col than in Ler. Depending on the development stage and tissue analyzed, the difference in editing extent varies between the two ecotypes; for example, in floral buds, editing extent does not differ. Single-point regression analysis of the editing efficiency in a sample of recombinant inbred lines derived from a cross between Col and Ler allowed the identification of two quantitative trait loci controlling this trait. A member of the pentatricopeptide repeat protein family that carries a putative mitochondrial transit sequence has been identified near a major quantitative trait locus on chromosome 4.

PMID:
16286447
PMCID:
PMC1310577
DOI:
10.1104/pp.105.069013
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center