Format

Send to

Choose Destination
Blood. 2006 Apr 15;107(8):3279-87. Epub 2005 Nov 8.

Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML).

Author information

1
Medizinische Hochschule Hannover, Zentrum Innere Medizin, Abteilung Hämatologie, Hämostaseologie und Onkologie, Carl-Neuberg Strasse 1, D-30623 Hannover, Germany. m.scherr@t-online.de

Abstract

Although targeting the BCR-ABL tyrosine kinase activity by imatinib mesylate has rapidly become first-line therapy in chronic myeloid leukemia (CML), drug resistance suggests that combination therapy directed to a complementing target may significantly improve treatment results. To identify such potential targets, we used lentivirus-mediated RNA interference (RNAi) as a tool for functional genomics in cell lines as well as primary normal and CML CD34+ cells. In a conditional cell culture model, we demonstrate that RNAi-mediated reduction of SHP2, STAT5, and Gab2 protein expression inhibits BCR-ABL-dependent but not cytokine-dependent proliferation in a dose-dependent manner. Similarly, colony formation of purified primary CML but not of normal CD34+ colony-forming cells is specifically reduced by inhibition of SHP2, STAT5, and Gab2 expression, respectively. In addition, coexpression of both anti-BCR-ABL and anti-SHP2 shRNAs from a single lentiviral vector induces stronger inhibition of colony formation as compared to either shRNA alone. The data indicate that BCR-ABL expression may affect the function of normal signaling molecules. Targeting these molecules may harbor significant therapeutic potential for the treatment of patients with CML.

PMID:
16278304
DOI:
10.1182/blood-2005-08-3087
[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center