Format

Send to

Choose Destination
Plant Mol Biol. 1992 Jul;19(4):563-75.

Iron induces ferritin synthesis in maize plantlets.

Author information

1
Laboratoire de Biologie Moléculaire Végétale, Centre National de la Recherche Scientifique, Grenoble, France.

Abstract

The iron-storage protein ferritin has been purified to homogeneity from maize seeds, allowing to determine the sequence of the first 29 NH2-terminal amino acids of its subunit and to raise specific rabbit polyclonal antibodies. Addition of 500 microM Fe-EDTA/75 microM Fe-citrate to hydroponic culture solutions of maize plantlets, previously starved for iron, led to a significant increase of the iron concentration of roots and leaves, albeit root iron was mainly found associated with the apoplast. Immunodetection of ferritin by western blots indicated that this iron treatment induced ferritin protein accumulation in roots and leaves over a period of 3 days. In order to investigate this induction at the ferritin mRNA level, various ferritin cDNA clones were isolated from a cDNA library prepared from poly(A)+ mRNA isolated from roots 48 h after iron treatment. These cDNAs were classified into two groups called FM1 and FM2. Upstream of the sequence encoding the mature ferritin subunit, both of these cDNAs contained an in-frame coding sequence with the characteristics of a transit peptide for plastid targeting. Two members of the FM1 subfamily, both partial at their 5' extremity, were characterized. They are identical, except in their 3' untranslated region: FM1A extends 162 nucleotides beyond the 3' terminus of FM1B. These two mRNAs could arise from the use of two different polyadenylation signals. FM2 is 96% identical to FM1 and contains 45 nucleotides of 5' untranslated region. Northern analyses of root and leaf RNAs, at different times after iron treatment, revealed ferritin mRNA accumulation in response to iron. Ferritin mRNA accumulation was transient and particularly abundant in leaves, reaching a maximum at 24 h. The level of ferritin mRNA in roots was affected to a lesser extent than in leaves.

PMID:
1627771
DOI:
10.1007/bf00026783
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center