Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2005 Nov 8;44(44):14443-54.

Phosphorylation of aquaporin PvTIP3;1 defined by mass spectrometry and molecular modeling.

Author information

1
Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.

Abstract

The water channel protein PvTIP3;1 (alpha-TIP) is a member of the Major Intrinsic Protein membrane channel family. The in vitro activity of this aquaporin is dependent on phosphorylation, and the protein is phosphorylated in vivo by a membrane-associated Ca(2+)-dependent kinase. Mutagenesis studies have implicated three serine residues as kinase targets, but only phosphorylation of Ser7 has been observed in vivo. An atomic model of PvTIP3;1 generated by homology modeling suggested that Ser7 is the only residue that would be sterically accessible to kinases. To further explain the phosphorylation of PvTIP3;1, we overexpressed this aquaporin in the methylotrophic yeast Pichia pastoris and purified the hexahistidine-tagged protein by immobilized metal affinity chromatography. Mass spectrometry confirmed that a fraction of recombinant PvTIP3;1 was phosphorylated. Phosphatase and kinase treatments indicated that Ser7 was the only residue that could be phosphorylated. In addition, mass spectrometry indicated that the native and expressed proteins are N-terminally acetylated. This is the first demonstration that a full-length, recombinant aquaporin can be produced in yeast and authentically phosphorylated in vitro. Characterization of phosphorylation-mediated gating in PvTIP3;1 will serve as a paradigm for understanding gating mechanisms of other channels.

PMID:
16262244
DOI:
10.1021/bi050565d
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center