Send to

Choose Destination
Biochemistry. 2005 Nov 8;44(44):14443-54.

Phosphorylation of aquaporin PvTIP3;1 defined by mass spectrometry and molecular modeling.

Author information

Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.


The water channel protein PvTIP3;1 (alpha-TIP) is a member of the Major Intrinsic Protein membrane channel family. The in vitro activity of this aquaporin is dependent on phosphorylation, and the protein is phosphorylated in vivo by a membrane-associated Ca(2+)-dependent kinase. Mutagenesis studies have implicated three serine residues as kinase targets, but only phosphorylation of Ser7 has been observed in vivo. An atomic model of PvTIP3;1 generated by homology modeling suggested that Ser7 is the only residue that would be sterically accessible to kinases. To further explain the phosphorylation of PvTIP3;1, we overexpressed this aquaporin in the methylotrophic yeast Pichia pastoris and purified the hexahistidine-tagged protein by immobilized metal affinity chromatography. Mass spectrometry confirmed that a fraction of recombinant PvTIP3;1 was phosphorylated. Phosphatase and kinase treatments indicated that Ser7 was the only residue that could be phosphorylated. In addition, mass spectrometry indicated that the native and expressed proteins are N-terminally acetylated. This is the first demonstration that a full-length, recombinant aquaporin can be produced in yeast and authentically phosphorylated in vitro. Characterization of phosphorylation-mediated gating in PvTIP3;1 will serve as a paradigm for understanding gating mechanisms of other channels.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center