Send to

Choose Destination
Dev Dyn. 2006 Feb;235(2):347-60.

Wingless signaling in a large insect, the blowfly Lucilia sericata: a beautiful example of evolutionary developmental biology.

Author information

Department of Experimental Medical Sciences, Lund University, Lund, Sweden.


Blowflies are the primary facultative agent in causing myiasis of domestic sheep in the whole world and, at the same time, it is an important tool for forensic medicine. Surprisingly, and in contrast to its importance, almost no data regarding the embryology and molecular markers are known for this insect. In this report, we present a detailed description of the blowfly Lucilia sericata embryogenesis and of imaginal disc development. The embryogenesis of Lucilia strongly resembles that of Drosophila, despite their apparent size difference. Moreover, imaginal disc development appears to be equally well conserved. Through cloning, expression, and functional studies, we show that the Lucilia Wingless (Wg) protein is highly conserved between the two species. We further show that parasegments are established in Lucilia, however, engrailed expression shows a more dynamic expression pattern than expected in comparison to Drosophila. Over-expression of Lucilia Wingless in Drosophila shows wingless-like wing phenotypes, suggesting that Lucilia Wingless blocks the signalling activity of Drosophila Wingless. Upon injection of wg dsRNA, we observe a "lawn of denticle" phenotype, closely resembling that of Drosophila. Due to the large size of the insect, the distance over which Wingless exerts signalling activity is up to three times larger than in Drosophila, yet the consequences are very similar. Our data demonstrate long-range wingless signaling mechanisms adapted for patterning large domains of naked cuticle and suggest signaling properties of Lucilia Wingless that are distinct from those of Drosophila Wingless.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center