Send to

Choose Destination
See comment in PubMed Commons below
Bioinformatics. 2006 Jan 1;22(1):68-76. Epub 2005 Oct 27.

Classification using functional data analysis for temporal gene expression data.

Author information

Wake Forest University School of Medicine, Public Health Sciences, Section on Biostatistics Medical Center Blvd., MRI-3, Winston-Salem, NC 27157, USA.



Temporal gene expression profiles provide an important characterization of gene function, as biological systems are predominantly developmental and dynamic. We propose a method of classifying collections of temporal gene expression curves in which individual expression profiles are modeled as independent realizations of a stochastic process. The method uses a recently developed functional logistic regression tool based on functional principal components, aimed at classifying gene expression curves into known gene groups. The number of eigenfunctions in the classifier can be chosen by leave-one-out cross-validation with the aim of minimizing the classification error.


We demonstrate that this methodology provides low-error-rate classification for both yeast cell-cycle gene expression profiles and Dictyostelium cell-type specific gene expression patterns. It also works well in simulations. We compare our functional principal components approach with a B-spline implementation of functional discriminant analysis for the yeast cell-cycle data and simulations. This indicates comparative advantages of our approach which uses fewer eigenfunctions/base functions. The proposed methodology is promising for the analysis of temporal gene expression data and beyond.


MATLAB programs are available upon request.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center