Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Signal. 2006 Jul;18(7):1087-96. Epub 2005 Oct 27.

Mechanism of induction of muscle protein degradation by angiotensin II.

Author information

1
Biomolecular Sciences, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.

Abstract

Angiotensin I and II have been shown to directly induce protein degradation in skeletal muscle through an increased activity and expression of the ubiquitin-proteasome proteolytic pathway. This investigation determines the role of the nuclear transcription factor nuclear factor-kappaB (NF-kappaB) in this process. Using murine myotubes as a surrogate model system both angiotensin I and II were found to induce activation of protein kinase C (PKC), with a parabolic dose-response curve similar to the induction of total protein degradation. Activation of PKC was required for the induction of proteasome expression, since calphostin C, a highly specific inhibitor of PKC, attenuated both the increase in total protein degradation and in proteasome expression and functional activity increased by angiotensin II. PKC is known to activate I-kappaB kinase (IKK), which is responsible for the phosphorylation and subsequent degradation of I-kappaB. Both angiotensin I and II induced an early decrease in cytoplasmic I-kappaB levels followed by nuclear accumulation of NF-kappaB. Using an NF-kappaB luciferase construct this was shown to increase transcriptional activation of NF-kappaB regulated genes. Maximal luciferase expression was seen at the same concentrations of angiotensin I/II as those inducing protein degradation. Total protein degradation induced by both angiotensin I and II was attenuated by resveratrol, which prevented nuclear accumulation of NF-kappaB, confirming that activation of NF-kappaB was responsible for the increased protein degradation. These results suggest that induction of proteasome expression by angiotensin I/II involves a signalling pathway involving PKC and NF-kappaB.

PMID:
16257180
DOI:
10.1016/j.cellsig.2005.09.009
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center