Send to

Choose Destination
Endocrinology. 2006 Feb;147(2):674-82. Epub 2005 Oct 27.

Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta-cells by linoleic acids.

Author information

Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.


Free fatty acids (FFAs), in addition to glucose, have been shown to stimulate insulin release through the G protein-coupled receptor (GPCR)40 receptor in pancreatic beta-cells. Intracellular free calcium concentration ([Ca(2+)](i)) in beta-cells is elevated by FFAs, although the mechanism underlying the [Ca(2+)](i) increase is still unknown. In this study, we investigated the action of linoleic acid on voltage-gated K(+) currents. Nystatin-perforated recordings were performed on identified rat beta-cells. In the presence of nifedipine, tetrodotoxin, and tolbutamide, voltage-gated K(+) currents were observed. The transient current represents less than 5%, whereas the delayed rectifier current comprises more than 95%, of the total K(+) currents. A long-chain unsaturated FFA, linoleic acid (10 microm), reversibly decreased the amplitude of K(+) currents (to less than 10%). This reduction was abolished by the cAMP/protein kinase A system inhibitors H89 (1 microm) and Rp-cAMP (10 microm) but was not affected by protein kinase C inhibitor. In addition, forskolin and 8'-bromo-cAMP induced a similar reduction in the K(+) current as that evoked by linoleic acid. Insulin secretion and cAMP accumulation in beta-cells were also increased by linoleic acid. Methyl linoleate, which has a similar structure to linoleic acid but no binding affinity to GPR40, did not change K(+) currents. Treatment of cultured cells with GPR40-specific small interfering RNA significantly reduced the decrease in K(+) current induced by linoleic acid, whereas the cAMP-induced reduction of K(+) current was not affected. We conclude that linoleic acid reduces the voltage-gated K(+) current in rat beta-cells through GPR40 and the cAMP-protein kinase A system, leading to an increase in [Ca(2+)](i) and insulin secretion.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center