Format

Send to

Choose Destination
Eur J Pharmacol. 2005 Nov 7;524(1-3):111-9. Epub 2005 Oct 25.

Vasodilatory and anti-inflammatory effects of the 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) via a nitric oxide-cGMP pathway.

Author information

1
Professional Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk, Republic of Korea.

Abstract

Vasorelaxant and anti-inflammatory effects of a 1,2,3,4,6-penta-O-galloyl-beta-d-glucose (PGG) isolated from the root barks of Paeonia suffruticosa and possible mechanisms responsible were investigated. PGG induced a concentration-dependent relaxation of the phenylephrine-precontracted rat aorta. This effect disappeared with the removal of functional endothelium. Pretreatment of the aortic tissues with either N(G)-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-alpha]-quinoxalin-1-one (ODQ) inhibited the relaxation induced by PGG. Incubation of human umbilical vein endothelial cells (HUVECs) or carotid arteries isolated from rats with PGG increased the production of cGMP in a dose-dependent manner, but this effect was blocked by pretreatment with L-NAME and ODQ, respectively. PGG treatment attenuated tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor-kappaB (NF-kappaB) p65 translocation in human umbilical vein endothelial cells. In addition, PGG suppressed the expression levels of adhesion molecules including intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) induced by TNF-alpha. TNF-alpha-induced monocyte chemoattractant protein-1 (MCP-1) expression was also attenuated by addition of PGG. PGG treatment inhibited cellular adhesion of U937 cells onto human umbilical vein endothelial cells induced by TNF-alpha. Taken together, the present study suggests that PGG dilates vascular smooth muscle and suppresses the vascular inflammatory process via endothelium-dependent nitric oxide (NO)/cGMP signaling.

PMID:
16253226
DOI:
10.1016/j.ejphar.2005.08.061
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances

Publication type

MeSH terms

Substances

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center