Format

Send to

Choose Destination
See comment in PubMed Commons below
J Med Chem. 2005 Nov 3;48(22):6970-9.

MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist.

Author information

1
Laboratory for Chemometrics and Cheminformatics, Department of Chemistry, University of Perugia, Via Elce di Sotto 10, I-06123 Perugia, Italy. gabri@chemiome.chm.unipg.it

Abstract

Identification of metabolic biotransformations can significantly affect the drug discovery process. Since bioavailability, activity, toxicity, distribution, and final elimination all depend on metabolic biotransformations, it would be extremely advantageous if this information could be produced early in the discovery phase. Once obtained, this information can help chemists to judge whether a potential candidate should be eliminated from the pipeline or modified to improve chemical stability or safety of new compounds. The use of in silico methods to predict the site of metabolism in phase I cytochrome-mediated reactions is a starting point in any metabolic pathway prediction. This paper presents a new method, specifically designed for chemists, that provides the cytochrome involved and the site of metabolism for any human cytochrome P450 (CYP) mediated reaction acting on new substrates. The methodology can be applied automatically to all the cytochromes for which 3D structure is known and can be used by chemists to detect positions that should be protected in order to avoid metabolic degradation or to check the suitability of a new scaffold or prodrug. The fully automated procedure is also a valuable new tool in early ADME-Tox assays (absorption, distribution, metabolism, and excretion toxicity assays), where drug safety and metabolic profile patterns must be evaluated as soon, and as early, as possible.

PMID:
16250655
DOI:
10.1021/jm050529c
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center