Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Dec 16;280(50):41236-42. Epub 2005 Oct 24.

FlhB regulates ordered export of flagellar components via autocleavage mechanism.

Author information

  • 1Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA. hedda.ferris@yale.edu

Abstract

The bacterial flagellum is a predominantly cell-external super-macromolecular construction whose structural components are exported by a flagellum-specific export apparatus. One of the export apparatus proteins, FlhB, regulates the substrate specificity of the entire apparatus; i.e. it has a role in the ordered export of the two main groups of flagellar structural proteins such that the cell-proximal components (rod-/hook-type proteins) are exported before the cell-distal components (filament-type proteins). The controlled switch between these two export states is believed to be mediated by conformational changes in the structure of the C-terminal cytoplasmic domain of FlhB (FlhB(C)), which is consistently and specifically cleaved into two subdomains (FlhB(CN) and FlhB(CC)) that remain tightly associated with each other. The cleavage event has been shown to be physiologically significant for the switch. In this study, the mechanism of FlhB cleavage has been more directly analyzed. We demonstrate that cleavage occurs in a heterologous host, Saccharomyces cerevisiae, deficient in vacuolar proteinases A and B. In addition, we find that cleavage of a slow-cleaving variant, FlhB(C)(P270A), is stimulated in vitro at alkaline pH. We also show by analytical gel-filtration chromatography and analytical ultracentrifugation experiments that both FlhB(C) and FlhB(C)(P270A) are monomeric in solution, and therefore self-proteolysis is unlikely. Finally, we provide evidence via peptide analysis and FlhB cleavage variants that the tertiary structure of FlhB plays a significant role in cleavage. Based on these results, we propose that FlhB cleavage is an autocatalytic process.

PMID:
16246842
DOI:
10.1074/jbc.M509438200
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center