Format

Send to

Choose Destination
J Insect Physiol. 2006 Jan;52(1):29-50. Epub 2005 Oct 21.

Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica.

Author information

1
Spatial, Physiological and Conservation Ecology, Department of Botany and Zoology, University of Stellenbosch, South Africa. celatoblatta@yahoo.co.uk

Abstract

The environmental physiology of three speciesof Collembola: Cryptopygus cisantarcticus, Isotoma klovstadi (Isotomidae) and Friesea grisea (Neanuridae) was investigated from November 2002 to February 2003 at Cape Hallett, North Victoria Land, Antarctica. All three species were freeze avoiding, and while supercooling points were variable on seasonal and daily scales in I. klovstadi and C. cisantarcticus, they remained largely static in F. grisea. LT50 (temperature where 50% of animals are killed by cold) was -13.6, -19.1 and -19.8 degrees C for C. cisantarcticus, I. klovstadi and F. grisea, respectively. Upper lethal temperature was 34, 34 and 38 degrees C for C. cisantarcticus, I. klovstadi and F. grisea. Critical thermal minimum onset (the temperature where individuals entered chill coma) was ca. -7, -12 and -8 degrees C for C. cisantarcticus, I. klovstadi and F. grisea, and 25% of I. klovstadi individuals froze without entering chill coma. Critical thermal maximum (the onset of spasms at high temperature) was 30, 33 and 34 degrees C for C. cisantarcticus, I. klovstadi and F. grisea. Haemolymph osmolality was approximately 720 mOsm for C. cisantarcticus and 680 mOsm for I. klovstadi, and both species showed a moderate degree of thermal hysteresis, which persisted through the season. Desiccation resistance was measured as survival above silica gel, and the species survived in the rank order of C. cisantarcticus<< I. klovstadi = F. grisea. Desiccation resulted in an increase in haemolymph osmolality in I. klovstadi, and water was quickly regained by desiccation-stressed individuals that had access to liquid water, but not by individuals placed in high humidity, indicating that this species is unable to absorb atmospheric water vapour. SDS-PAGE did not suggest any strong patterns in protein synthesis either seasonally or in response to temperature or desiccation stress. Microclimate temperatures were measured at sites representative of collection sites for the three species. Microclimate temperatures were highly variable on a diurnal and weekly scale (the latter relating to weather patterns), but showed little overall variation across the summer season. Potentially lethal high and low temperatures were recorded at several sites, and it is suggested that these temperature extremes account for the observed restriction of the less-tolerant C. cisantarcticus at Cape Hallett. Together, these data significantly increase the current knowledge of the environmental physiology of Antarctic Collembola.

PMID:
16246360
DOI:
10.1016/j.jinsphys.2005.09.002
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center