Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Soc Trans. 2006 Feb;34(Pt 1):12-6.

TOPs and their regulation.

Author information

1
School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

Abstract

Upon cell-cycle arrest or nutrient deprivation, the cellular rate of ribosome production is reduced significantly. In mammalian cells, this effect is achieved in part through a co-ordinated inhibition of RP (ribosomal protein) synthesis. More specifically, translation initiation on RP mRNAs is inhibited. Translational regulation of RP synthesis is dependent on cis-elements within the 5'-UTRs (5'-untranslated regions) of the RP mRNAs. In particular, a highly conserved 5'-TOP (5'-terminal oligopyrimidine tract) appears to play a key role in the regulation of RP mRNA translation. This article explores recent developments in our understanding of the mechanism of TOP mRNA regulation, focusing on upstream signalling pathways and trans-acting factors, and highlighting some interesting observations which have come to light following the recent development of cDNA microarray technology coupled with polysome analysis.

PMID:
16246169
DOI:
10.1042/BST20060012
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center