Format

Send to

Choose Destination
Biochem Soc Trans. 2005 Dec;33(Pt 6):1225-30.

The structure of the bacterial protein translocation complex SecYEG.

Author information

1
Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK. ian.collinson@bristol.ac.uk

Abstract

Proteins destined for secretion, membrane insertion or organellar import contain signal sequences that direct them to the membrane. Once there, transport machines receive and translocate them appropriately across or into the membrane. The related SecY and Sec61 protein translocation complexes are ubiquitous components of machines that are essential for protein transport. They co-operate with various partners such that the substrate polypeptide is pulled or pushed through the membrane by post- or co-translational mechanisms. In bacteria and archaea, the SecY complex (SecYEG/SecYEbeta) is a heterotrimer, which associates with ribosomes so that the polypeptide is threaded through the channel during its synthesis. Bacteria possess an additional pathway, whereby the newly synthesized substrate protein is maintained in an unfolded conformation and is engaged by the ATPase SecA and delivered to the translocon. Recent medium- (cryo-electron microscopy) and high-resolution (X-ray) structures of the Sec complex have dramatically increased our understanding about how proteins pass through membranes, but have posed a number of new questions. The Sec complex is active as an oligomer, but the structure indicates that the protein-conducting channel is formed by a monomer of SecYEG. Structures of the membrane-bound dimer of Escherichia coli SecYEG and the detergent-solubilized monomer of Methanococcus jannaschii SecYEbeta will be described and discussed in the context of the mechanism that underlies protein secretion and membrane insertion.

PMID:
16246086
DOI:
10.1042/BST20051225
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center