Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2006 Mar;290(3):H1098-102. Epub 2005 Oct 21.

Transcriptional analysis of doxorubicin-induced cardiotoxicity.

Author information

  • 1Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center at Dallas, USA.

Abstract

Doxorubicin is an effective chemotherapeutic agent against a broad range of tumors. However, a threshold dose of doxorubicin causes an unacceptably high incidence of heart failure and limits its clinical utility. We have established two models of doxorubicin cardiotoxicity in mice: 1) in an acute model, mice are treated with 15 mg/kg of doxorubicin once; and 2) in a chronic model, they receive 3 mg/kg weekly for 12 wk. Using echocardiography, we have monitored left ventricular function during treatment in the chronic model and seen the expected development of dilated cardiomyopathy. Treated mice showed histological abnormalities similar to those seen in patients with doxorubicin cardiomyopathy. To investigate transcriptional regulation in these models, we used a muscle-specific cDNA microarray. We have identified genes that respond to doxorubicin exposure in both models and confirmed these results using real-time PCR. In the acute model, a set of genes is regulated early and rapidly returns to baseline levels, consistent with the half-life of doxorubicin. In the chronic model, which mimics the clinical situation much more closely, we identified dysregulated genes that implicate specific mechanisms of cardiac toxicity. These include STARS, a hypertrophy-responsive gene; SNF1-kinase, a potential modulator of ATP levels; and AXUD1, a downstream target of the proapoptotic regulator AXIN1.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk