Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2005 Nov 25;354(2):473-82. Epub 2005 Oct 7.

A single disulfide bond differentiates aggregation pathways of beta2-microglobulin.

Author information

1
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Abstract

Deposition of wild-type beta2-microglobulin (beta2m) into amyloid fibrils is a complication in patients undergoing long-term hemodialysis. The native beta-sandwich fold of beta2m has a highly conserved disulfide bond linking Cys25 and Cys80. Oxidized beta2m forms needle-like amyloid fibrils at pH 2.5 in vitro, whereas reduced beta2m, at acid pH, in which the intra-chain disulfide bond is disrupted, cannot form typical fibrils. Instead, reduced beta2m forms thinner and more flexible filaments. To uncover the difference in molecular mechanisms underlying the aggregation of the oxidized and reduced beta2m, we performed molecular dynamics simulations of beta2m oligomerization under oxidized and reduced conditions. We show that, consistent with experimental observations, the oxidized beta2m forms domain-swapped dimer, in which the two proteins exchange their N-terminal segments complementing each other. In contrast, both dimers and trimers, formed by reduced beta2m, are comprised of parallel beta-sheets between monomers and stabilized by the hydrogen bond network along the backbone. The oligomerized monomers are in extended conformations, capable of further aggregation. We find that both reduced and oxidized dimers are thermodynamically less stable than their corresponding monomers, indicating that beta2m oligomerization is not accompanied by the formation of a thermodynamically stable dimer. Our studies suggest that the different aggregation pathways of oxidized and reduced beta2m are dictated by the formation of distinct precursor oligomeric species that are modulated by Cys25-Cys80 disulfide-bonds. We propose that the propagation of domain swapping is the aggregation mechanism for the oxidized beta2m, while "parallel stacking" of partially unfolded beta2m is the aggregation mechanism for the reduced beta2m.

PMID:
16242719
DOI:
10.1016/j.jmb.2005.09.075
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center