Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Cell Cardiol. 2005 Dec;39(6):972-81. Epub 2005 Oct 19.

Isoproterenol does not enhance Ca-dependent Na/Ca exchange current in intact rabbit ventricular myocytes.

Author information

1
Department of Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA.

Abstract

Cardiac Na/Ca exchange (NCX, NCX1.1) is critical in cardiac myocyte Ca regulation, and its altered function contributes to inotropic state, systolic dysfunction in heart failure and arrhythmogenesis. Regulation of NCX is multifaceted, but protein kinase A (PKA) effects on NCX function are controversial. Here, we use three different and complementary approaches to compare NCX function +/-1 microM isoproterenol (ISO) in intact rabbit cardiac myocytes (in paired comparisons). First, in field-stimulated intact cells we inferred the cytosolic [Ca] ([Ca](i)) dependence of NCX function from the decay rate of caffeine-induced [Ca](i) transients. Second, we measured caffeine-induced [Ca](i) and inward I(NCX) simultaneously (perforated patch voltage clamp), to measure directly the [Ca](i) dependence of NCX rate. Third, using whole cell ruptured patch with [Ca](i) heavily buffered to 100 nM, [Na](i)=10 mM, and I(Ca), SR Ca release and Na/K pump all blocked, we recorded I(NCX) ramps at 37 degrees C. We find that NCX function is not altered by PKA activation under any of these three protocols, where intracellular conditions ranged from near-physiological to highly controlled. This does not rule out NCX modulation by PKA under all conditions, or in species other than rabbit. However, such effects are likely to be either minor (vs. other PKA actions on myocyte Ca handling) or indirect, such as secondary effects dependent on altered local [Ca](i) and [Na](i).

PMID:
16242149
DOI:
10.1016/j.yjmcc.2005.09.005
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center