Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Gastrointest Liver Physiol. 2006 Feb;290(2):G335-42. Epub 2005 Oct 20.

Bile salt exposure increases proliferation through p38 and ERK MAPK pathways in a non-neoplastic Barrett's cell line.

Author information

Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75216, USA.


Bile reflux has been implicated in the neoplastic progression of Barrett's esophagus (BE). Bile salts increase proliferation in a Barrett's-associated adenocarcinoma cell line (SEG-1 cells) by activating ERK and p38 MAPK pathways. However, it is not clear that these findings in cancer cells are applicable to non-neoplastic cells of benign BE. We examined the effect of bile salts on three human cell lines: normal esophageal squamous (NES) cells, non-neoplastic Barrett's cells (BAR cells), and SEG-1 cells. We hypothesized that bile salt exposure activates proproliferative and antiapoptotic pathways to promote increased growth in BE. NES, BAR, and SEG-1 cells were exposed to glycochenodeoxycholic acid (GCDA) at a neutral pH for 5 min. Proliferation was measured by Coulter counter cell counts and a 5-bromo-2'-deoxyuridine (BrdU) incorporation assay. GCDA-induced MAPK activation was examined by Western blot analysis for phosphorylated ERK and p38. Apoptosis was measured by TdT-mediated dUTP nick-end labeling and annexin V staining after GCDA and UV-B exposure. Statistical significance was determined by ANOVA. NES cells exposed to 5 min of GCDA did not increase cell number. In BAR cells, GCDA exposure increased cell number by 31%, increased phosphorylated p38 and ERK levels by two- to three-fold, increased BrdU incorporation by 30%, and decreased UV-induced apoptosis by 15-20%. In conclusion, in a non-neoplastic Barrett's cell line, GCDA exposure induces proliferation by activation of both ERK and p38 MAPK pathways. These findings suggest a potential mechanism whereby bile reflux may facilitate the neoplastic progression of BE.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center