Send to

Choose Destination
J Neurotrauma. 2005 Oct;22(10):1052-65.

Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury.

Author information

Division of Neurosurgery, Department of Surgery, Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 92354, USA.


The metabolic fate of [1,2 13C]-labeled glucose was determined in male control and unilateral controlled cortical impact (CCI) injured rats at 3.5 and 24 h after surgery. The concentration of 13C-labeled glucose, lactate, glutamate and glutamine were measured in the injured and contralateral cortex. CCI animals showed a 145% increase in 13C lactate in the injured cortex at 3.5 h, but not at 24 h after injury, indicating increased glycolysis in neurons and/or astrocytes ipsilateral to CCI. Total levels of 13C glutamate in cortical tissue extracts did not differ between groups. However, 13C glutamine increased by 40% in the left and 98% in the right cortex at 3.5 h after injury, most likely resulting from an increase in astrocytic metabolism of glutamate. Levels of 13C incorporation into the glutamine isotopomers had returned to control levels by 24 h after CCI. The singlet to doublet ratio of the lactate C3 resonances was calculated to estimate the flux of glucose through the pentose phosphate pathway (PPP). CCI resulted in bilateral increases (9-12%) in the oxidation of glucose via the PPP, with the largest increase occurring at 24 h. Since an increase in PPP activity is associated with NADPH generation, the data suggest that there was an increasing need for reducing equivalents after CCI. Furthermore, 13C was incorporated into glutamate and glutamine isotopomers associated with multiple turns of the tricarboxylic acid (TCA) cycle, indicating that oxidative phosphorylation of glucose was maintained in the injured cortex at 3.5 and 24 h after a moderate to severe CCI injury.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center