Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2005 Nov 1;175(9):5596-600.

Cutting edge: MyD88 controls phagocyte NADPH oxidase function and killing of gram-negative bacteria.

Author information

  • 1Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.


MyD88 is an adaptor protein for the TLR family of proteins that has been implicated as a critical mediator of innate immune responses to pathogen detection. In this study, we report that MyD88 plays a crucial role in killing Gram-negative bacteria by primary macrophages via influencing NADPH oxidase function. Peritoneal macrophages from MyD88-/- mice exhibited a marked inability to kill Escherichia coli (F18) or an attenuated strain of Salmonella typhimurium (sseB) in vitro. This defect in killing was due to diminished NADPH oxidase-mediated production of superoxide anion in response to bacteria by MyD88-/- phagocytes as a consequence of defective NADPH oxidase assembly. Defective oxidase assembly in MyD88-deficient macrophages resulted from impaired p38 MAPK activation and subsequent phosphorylation of p47phox. Together these data demonstrate a pivotal role for MyD88 in killing Gram-negative bacteria via modulation of NADPH oxidase activity in phagocytic cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center