Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Jan 20;281(3):1714-24. Epub 2005 Oct 19.

Identification and characterization of amino acid residues essential for the active site of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from Staphylococcus aureus.

Author information

  • 1Laboratory of Developmental Biochemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan.

Abstract

The enzymes essential for bacterial peptidoglycan biosynthesis are attractive targets for antimicrobial drug development. One of these is MurB, which contains FAD as a cofactor and catalyzes the NADPH-dependent reduction of UDP-N-acetylenolpyruvylglucosamine (UDP-GlcNAcEP) to UDP-N-acetylmuramic acid. This study examined the roles of the conserved amino acid residues of Staphylococcus aureus MurB, which are located near the active site in x-ray crystal structures. Seven of 11 site-directed mutated murB genes lost the ability to complement a temperature-sensitive S. aureus murB mutant. Biochemical characterization of the seven mutated MurB proteins revealed that they cannot carry out the reduction of UDP-GlcNAcEP, although they can all catalyze the intramolecular reduction of FAD via NADPH. Spectrometric analyses of the oxidized form of the mutated proteins in the presence and absence of NADP+ or UDP-GlcNAcEP revealed that these essential amino acid residues play four distinct roles in substrate interactions: Arg213 is essential for maintenance of the electronic state of FAD; Arg176 is required for interaction with UDP-GlcNAcEP; His259 is required for interaction with both UDP-GlcNAcEP and NADP+; and Asn71, Tyr175, Ser226, and Glu296 are not apparently required for interaction with either ligand. The results presented here identify for the first time the amino acid residues of MurB that are required for the interaction with UDP-Glc-NAcEP and NADP+.

PMID:
16236703
DOI:
10.1074/jbc.M509277200
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center