Send to

Choose Destination
Nat Cell Biol. 2005 Nov;7(11):1091-8.

Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G proteins.

Author information

Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604.


Asymmetric division of Drosophila neuroblasts (NBs) and the Caenorhabditis elegans zygote uses polarity cues provided by the Par proteins, as well as heterotrimeric G-protein-signalling that is activated by a receptor-independent mechanism mediated by GoLoco/GPR motif proteins. Another key component of this non-canonical G-protein activation mechanism is a non-receptor guanine nucleotide-exchange factor (GEF) for Galpha, RIC-8, which has recently been characterized in C. elegans and in mammals. We show here that the Drosophila Ric-8 homologue is required for asymmetric division of both NBs and pl cells. Ric-8 is necessary for membrane targeting of Galphai, Pins and Gbeta13F, presumably by regulating multiple Galpha subunit(s). Ric-8 forms an in vivo complex with Galphai and interacts preferentially with GDP-Galphai, which is consistent with Ric-8 acting as a GEF for Galphai. Comparisons of the phenotypes of Galphai, Ric-8, Gbeta13Fsingle and Ric-8;Gbeta13F double loss-of-function mutants indicate that, in NBs, Ric-8 positively regulates Gai activity. In addition, Gbetagamma acts to restrict Galphai (and GoLoco proteins) to the apical cortex, where Galphai (and Pins) can mediate asymmetric spindle geometry.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center