Format

Send to

Choose Destination
Dev Biol. 2005 Dec 1;288(1):126-38. Epub 2005 Oct 11.

Are dendrites in Drosophila homologous to vertebrate dendrites?

Author information

1
Faculty of Life Sciences, WTCCMR, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.

Abstract

Dendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display calcium elevation upon excitation, have distinct cytoskeletal features, develop later than axons and are preceded by restricted localisation of Par6-complex proteins. Furthermore, we demonstrate in situ and culture that Drosophila dendrites can be shifted from the primary neurite to their soma, i.e. into vertebrate-like positions. Integrating these different lines of argumentation, we propose that dendrites in vertebrates and higher invertebrates have a common origin, and differences in dendrite location can be explained through translocation of neuronal cell bodies introduced during the evolutionary process by which arthropods and vertebrates diverged from a common urbilaterian ancestor. Implications of these findings for studies of dendrite development, neuronal polarity, transport and evolution are discussed.

PMID:
16223476
DOI:
10.1016/j.ydbio.2005.09.026
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center