Send to

Choose Destination
Anal Chem. 2005 Oct 15;77(20):6528-34.

Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy.

Author information

Department of Chemistry, University of California-Irvine, Irvine, California 92697, USA.


The kinetics of the ribonuclease H (RNase H) surface hydrolysis of RNA-DNA heteroduplexes formed on DNA microarrays was studied using a combination of real-time surface plasmon resonance imaging (SPRI) and surface plasmon fluorescence spectroscopy (SPFS). Time-dependent SPRI and SPFS data at various enzyme concentrations were quantitatively analyzed using a simple model that couples diffusion, enzyme adsorption, and surface enzyme kinetics. This model is characterized by a set of three rate constants, enzyme adsorption (k(a)), enzyme desorption (k(d)), enzyme catalysis (k(cat)), and one dimensionless diffusion parameter (beta). Values of k(a) = 3.15 (+/-0.20) x 10(6) M(-1).s(-1), k(d) = 0.10 (+/-0.05) s(-1), and k(cat) = 0.95 (+/-0.10) s(-1) were determined from fitting all of the SPRI and SPFS data sets. One of the most interesting kinetic parameters is the surface RNase H hydrolysis reaction rate constant (k(cat)), which was found to be approximately 10 times slower than that observed in solution, but approximately 100 times faster than that recently observed for the exonuclease III surface hydrolysis of double-stranded DNA microarrays (k(cat) = 0.009 s(-1)). Moreover, the surface coverage of the intermediate enzyme-substrate complex (ES) was found to be extremely small during the course of the reaction because k(cat) is much larger than the product of k(a) and the bulk enzyme concentration.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center