Format

Send to

Choose Destination
J Am Chem Soc. 2003 Sep 17;125(37):11350-9.

A highly active zinc catalyst for the controlled polymerization of lactide.

Author information

1
Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota, 55455, USA.

Abstract

We report the preparation, structural characterization, and detailed lactide polymerization behavior of a new Zn(II) alkoxide complex, (L(1)ZnOEt)(2) (L(1) = 2,4-di-tert-butyl-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenolate). While an X-ray crystal structure revealed the complex to be dimeric in the solid state, nuclear magnetic resonance and mass spectrometric analyses showed that the monomeric form L(1)ZnOEt predominates in solution. The polymerization of lactide using this complex proceeded with good molecular weight control and gave relatively narrow molecular weight distribution polylactide, even at catalyst loadings of <0.1% that yielded M(n) as high as 130 kg mol(-)(1). The effect of impurities on the molecular weight of the product polymers was accounted for using a simple model. Detailed kinetic studies of the polymerization reaction enabled integral and nonintegral orders in L(1)ZnOEt to be distinguished and the empirical rate law to be elucidated, -d[LA]/dt = k(p)[L(1)ZnOEt][LA]. These studies also showed that L(1)ZnOEt polymerizes lactide at a rate faster than any other Zn-containing system reported previously. This work provides important mechanistic information pertaining to the polymerization of lactide and other cyclic esters by discrete metal alkoxide complexes.

PMID:
16220958
DOI:
10.1021/ja0359512

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center