Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Proteomics. 2006 Jan;5(1):144-56. Epub 2005 Oct 11.

Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition.

Author information

1
Waters Corporation, Milford, Massachusetts 01757-3696, USA. jeff_silva@waters.com

Abstract

Relative quantification methods have dominated the quantitative proteomics field. There is a need, however, to conduct absolute quantification studies to accurately model and understand the complex molecular biology that results in proteome variability among biological samples. A new method of absolute quantification of proteins is described. This method is based on the discovery of an unexpected relationship between MS signal response and protein concentration: the average MS signal response for the three most intense tryptic peptides per mole of protein is constant within a coefficient of variation of less than +/-10%. Given an internal standard, this relationship is used to calculate a universal signal response factor. The universal signal response factor (counts/mol) was shown to be the same for all proteins tested in this study. A controlled set of six exogenous proteins of varying concentrations was studied in the absence and presence of human serum. The absolute quantity of the standard proteins was determined with a relative error of less than +/-15%. The average MS signal responses of the three most intense peptides from each protein were plotted against their calculated protein concentrations, and this plot resulted in a linear relationship with an R(2) value of 0.9939. The analyses were applied to determine the absolute concentration of 11 common serum proteins, and these concentrations were then compared with known values available in the literature. Additionally within an unfractionated Escherichia coli lysate, a subset of identified proteins known to exist as functional complexes was studied. The calculated absolute quantities were used to accurately determine their stoichiometry.

PMID:
16219938
DOI:
10.1074/mcp.M500230-MCP200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center