Format

Send to

Choose Destination
J Pept Res. 2005 Nov;66(5):277-96.

Tryptophan-containing peptide helices: interactions involving the indole side chain.

Author information

1
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.

Abstract

Two designed peptide sequences containing Trp residues at positions i and i + 5 (Boc-Leu-Trp-Val-Ala-Aib-Leu-Trp-Val-OMe, 1) as well as i and i + 6 (Boc-Leu-Trp-Val-Aib-Ala-Aib-Leu-Trp-Val-OMe, 2) containing one and two centrally positioned Aib residues, respectively, for helix nucleation, have been shown to form stable helices in chloroform solutions. Structures derived from nuclear magnetic resonance (NMR) data reveal six and seven intramolecularly hydrogen-bonded NH groups in peptides 1 and 2, respectively. The helical conformation of octapeptide 1 has also been established in the solid state by X-ray diffraction. The crystal structure reveals an interesting packing motif in which helical columns are stabilized by side chain-backbone hydrogen bonding involving the indole Nepsilon1H of Trp(2) as donor, and an acceptor C=O group from Leu(6) of a neighboring molecule. Helical columns also associate laterally, and strong interactions are observed between the Trp(2) and Trp(7) residues on neighboring molecules. The edge-to-face aromatic interactions between the indoles suggest a potential C-H...pi interaction involving the Czeta3H of Trp(2). Concentration dependence of NMR chemical shifts provides evidence for peptide association in solution involving the Trp(2) Nepsilon1H protons, presumably in a manner similar to that observed in the crystal.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center