Send to

Choose Destination
Microbes Infect. 2006 Jan;8(1):248-53. Epub 2005 Sep 13.

Co-infection with two different Campylobacter jejuni strains in a patient with the Guillain-Barré syndrome.

Author information

Department of Medical Microbiology and Infectious Diseases, Erasmus MC - University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.


Campylobacter jejuni is the predominant cause of antecedent infection in Guillain-Barré syndrome (GBS) or Miller Fisher syndrome (MFS). C. jejuni probably triggers GBS or MFS through molecular mimicry between bacterial sialylated lipo-oligosaccharides (LOS) and gangliosides in peripheral nerve tissue. We investigated whether co-infections with multiple C. jejuni strains occur in GBS or MFS patients and we further characterized these strains. PFGE analysis of 83 C. jejuni isolates from single primary colonies from stool cultures of 13 patients with GBS or MFS revealed co-infection with two different strains in one patient (8%). We showed that only strain GB5.1 contained an LOS biosynthesis gene locus that is associated with neuropathy. The patient serum strongly reacted with the LOS of strain GB5.1 and not with the LOS of strain GB5.2. Mass spectrometry revealed that both strains expressed a non-sialylated outer core structure in their LOS. The patient serum contained anti-asialo-GM2 antibodies that cross-reacted with the LOS of strain GB5.1. This study demonstrates that co-infection with multiple C. jejuni strains occurs in GBS patients. Consequently, not all C. jejuni strains isolated from the faeces of a GBS patient are involved in the pathogenesis of GBS per se. Furthermore, this is the first report in which cross-reactivity of antibodies to asialo-GM2 and to the LOS of a C. jejuni strain from a GBS patient has been demonstrated. This finding suggests that molecular mimicry with non-sialylated structures may also be involved in the pathogenesis of GBS.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center