Format

Send to

Choose Destination
Stem Cells. 2006 Jan;24(1):168-76. Epub 2005 Oct 6.

Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion.

Author information

1
Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53706, USA.

Abstract

Here, we examine the ability of undifferentiated human embryonic stem cells (hESCs) to reprogram the nuclei of hESC-derived myeloid precursors following cell-cell fusion. Using an OP9 coculture system, we produced CD45+ CD33+ myeloperoxidase+ myeloid precursors from an Oct4-enhanced green fluorescent protein (EGFP) knock-in hESC line and demonstrated that Oct4-EGFP expression was extinguished in these precursors. Upon fusion with undifferentiated hESCs, EGFP expression from the endogenous Oct4 promoter/regulatory region was re-established, ESC-specific surface antigens and marker genes were expressed, and myeloid precursor-specific antigens were no longer detectable. When the hybrid cells were formed into embryoid bodies, upregulation of genes characteristic of the three germ layers and extraembryonic tissues occurred, indicating that the hybrid cells had the potential to differentiate into multiple lineages. Interestingly, the hybrid cells were capable of redifferentiating into myeloid precursors with efficiency comparable with that of diploid hESCs despite their neartetraploid chromosome complement. These results indicate that hESCs are capable of reprogramming nuclei from differentiated cells and that hESC hybrid cells provide a new model system for studying the mechanisms of nuclear reprogramming.

PMID:
16210403
DOI:
10.1634/stemcells.2005-0292
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center