Send to

Choose Destination
See comment in PubMed Commons below
Langmuir. 2005 Oct 11;21(21):9651-9.

Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles.

Author information

  • 1Department of Chemical Engineering and the Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.


Antibacterial coatings based on hydrogen-bonded multilayers containing in situ synthesized Ag nanoparticles were created on planar surfaces and on magnetic colloidal particles. We report the antibacterial properties of these coatings, determined using a disk-diffusion (Kirby-Bauer) test, as a function of the film thickness and the concentration of Ag nanoparticles in the hydrogen-bonded multilayers. The zone of inhibition (ZoI) determined by the disk-diffusion test increases as the thickness of the multilayer film is increased. Results obtained for the values of the ZoI as a function of film thickness can be described adequately with a simple diffusion model (i.e., the square of the zone of inhibition (ZoI) depended linearly on the logarithm of the thickness of the silver-loaded films). This observation suggests that, in order to incrementally increase the ZoI, an exponentially increasing amount of Ag is required within the multilayers. In general, there was no statistically significant correlation between the zone of inhibition and the number of Ag loading and reduction cycles. The duration of sustained release of antibacterial Ag ions from these coatings, however, could be prolonged by increasing the total supply of zerovalent silver in the films via multiple loading and reduction cycles. These results indicate that the release of silver is controlled by an oxidation mechanism at the surface of the nanoparticles and that repeated loading and reduction of silver leads preferentially to growth of the existing silver nanoparticles in the film as opposed to nucleation of new Ag nanoparticles. We also show that magnetic microspheres coated with silver nanoparticle loaded hydrogen-bonded multilayer thin films can be used to deliver antibacterial agents to specific locations. The minimum inhibitory concentration (MIC) of nanocomposite coated microspheres was determined by the agar dilution technique: antibacterial magnetic microspheres with higher concentrations of Ag nanoparticles exhibited lower MIC values.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center