Format

Send to

Choose Destination
See comment in PubMed Commons below
Biol Chem. 2005 Aug;386(8):759-66.

The NC1 dimer of human placental basement membrane collagen IV: does a covalent crosslink exist?

Author information

1
Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.

Abstract

Triple-helical collagen IV protomers associate through their N- and C-termini, forming a three-dimensional network that provides basement membranes with mechanical strength. Within this network, the C-terminal non-collagenous (NC1) domains form tight dimeric junctions. Crystallographic analyses of isolated NC1 domains show two trimeric cap-like structures interacting via a large interface. Previously, for NC1 from human placenta type-IV collagen we described covalent alpha1-alpha1 and alpha2-alpha2 crosslinks between Met93 and Lys211 of opposing alpha1(IV) and alpha2(IV) NC1-chains, which further stabilize this interface and explain the occurrence of reduction-insensitive NC1-chain dimers. However, their existence was recently questioned, and we therefore analyzed NC1-domain dimers in more detail by biochemical and protein crystallographic methods. Short-exposure diffraction data show a clear electron density cross-connecting the respective residues, which gradually disappears with prolonged crystal irradiation. Sequence analyses of isolated tryptic peptides derived from denatured NC1 monomers and dimers indicate that only the dimers, but not the monomers, yield these chemically labile cross-linked peptides. These data clearly demonstrate the presence of reduction-resistant, but chemically and radiation-sensitive covalent crosslinks between the side chains of Met93 and Lys211 in human placenta type-IV collagen.

PMID:
16201871
DOI:
10.1515/BC.2005.089
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for iFactory
    Loading ...
    Support Center