Format

Send to

Choose Destination
Environ Sci Technol. 2005 Sep 15;39(18):6961-70.

Combustion products of plastics as indicators for refuse burning in the atmosphere.

Author information

1
Environmental and Petroleum Research Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA. simoneit@coas.oregonstate.edu

Abstract

Despite all of the economic problems and environmental discussions on the dangers and hazards of plastic materials, plastic production worldwide is growing at a rate of about 5% per year. Increasing techniques for recycling polymeric materials have been developed during the last few years; however, a large fraction of plastics are still being discarded in landfills or subjected to intentional or incidental open-fire burning. To identify specific tracer compounds generated during such open-fire combustion, both smoke particles from burning and plastic materials from shopping bags, roadside trash, and landfill garbage were extracted for gas chromatography-mass spectrometry analyses. Samples were collected in Concón, Chile, an area frequently affected by wildfire incidents and garbage burning, and the United States for comparison. Atmospheric samples from various aerosol sampling programs are also presented as supportive data. The major components of plastic extracts were even-carbon-chain n-alkanes (C16-C40), the plasticizer di-2-ethylhexyl phthalate, and the antioxidants and lubricants/antiadhesives Irganox 1076, Irgafos 168, and its oxidation product tris(2,4-di-tertbutylphenyl) phosphate. Major compounds in smoke from burning plastics include the non-source-specific n-alkanes (mainly even predominance), terephthalic acid, phthalates, and 4-hydroxybenzoic acid, with minor amounts of polycyclic aromatic hydrocarbons (including triphenylbenzenes) and tris(2,4-di-tert-butylphenyl)phosphate. 1,3,5-Triphenylbenzene and tris(2,4-di-tert-butylphenyl)- phosphate were found in detectable amounts in atmospheric samples where plastics and refuse were burned in open fires, and thus we propose these two compounds as specific tracers for the open-burning of plastics.

PMID:
16201617
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center