Send to

Choose Destination
See comment in PubMed Commons below

A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control.

Author information

Department of Biomedical Engineering, Rehabilitation Engineering Research Center and Prosthetic Research Laboratory, Northwestern University, Chicago, IL 60611, USA.


This paper presents a heuristic fuzzy logic approach to multiple electromyogram (EMG) pattern recognition for multifunctional prosthesis control. Basic signal statistics (mean and standard deviation) are used for membership function construction, and fuzzy c-means (FCMs) data clustering is used to automate the construction of a simple amplitude-driven inference rule base. The result is a system that is transparent to, and easily "tweaked" by, the prosthetist/clinician. Other algorithms in current literature assume a longer period of unperceivable delay, while the system we present has an update rate of 45.7 ms with little postprocessing time, making it suitable for real-time application. Five subjects were investigated (three with intact limbs, one with a unilateral transradial amputation, and one with a unilateral transradial limb-deficiency from birth). Four subjects were used for system offline analysis, and the remaining intact-limbed subject was used for system real-time analysis. We discriminated between four EMG patterns for subjects with intact limbs, and between three patterns for limb-deficient subjects. Overall classification rates ranged from 94% to 99%. The fuzzy algorithm also demonstrated success in real-time classification, both during steady state motions and motion state transitioning. This functionality allows for seamless control of multiple degrees-of-freedom in a multifunctional prosthesis.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center