Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2005 Dec 30;1754(1-2):253-62. Epub 2005 Sep 8.

MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits.

Author information

  • 1Department of Cell Biology, Laboratory of Transcription Regulation, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093 Warsaw, Poland. bozenakk@nencki.gov.pl

Abstract

Excessive inflammation is becoming accepted as a critical factor in many human diseases, including inflammatory and autoimmune disorders, neurodegenerative conditions, infection, cardiovascular diseases, and cancer. Cerebral ischemia and neurodegenerative diseases are accompanied by a marked inflammatory reaction that is initiated by expression of cytokines, adhesion molecules, and other inflammatory mediators, including prostanoids and nitric oxide. This review discusses recent advances regarding the detrimental effects of inflammation, the regulation of inflammatory signalling pathways in various diseases, and the potential molecular targets for anti-inflammatory therapy. Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine protein kinases that mediate fundamental biological processes and cellular responses to external stress signals. Increased activity of MAPK, in particular p38 MAPK, and their involvement in the regulation of the synthesis of inflammation mediators at the level of transcription and translation, make them potential targets for anti-inflammatory therapeutics. Inhibitors targeting p38 MAPK and JNK pathways have been developed, and preclinical data suggest that they exhibit anti-inflammatory activity. This review discusses how these novel drugs modulate the activity of the p38 MAPK and JNK signalling cascades, and exhibit anti-inflammatory effects in preclinical disease models, primarily through the inhibition of the expression of inflammatory mediators. Use of MAPK inhibitors emerges as an attractive strategy because they are capable of reducing both the synthesis of pro-inflammatory cytokines and their signalling. Moreover, many of these drugs are small molecules that can be administered orally, and initial results of clinical trials have shown clinical benefits in patients with chronic inflammatory disease.

PMID:
16198162
DOI:
10.1016/j.bbapap.2005.08.017
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center