Format

Send to

Choose Destination
See comment in PubMed Commons below
Proteomics. 2005 Nov;5(16):4161-9.

A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii.

Author information

1
Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA. tracie.williams@cfsan.fda.gov

Abstract

Thermal tolerance has been identified as an important factor relevant to the pathogenicity of Enterobacter sakazakii in human neonates. To identify a biomarker specific for this phenotypic trait, intact protein expression profiles of 12 strains of E. sakazakii were obtained using liquid chromatography mass spectrometry. Proteins were extracted from the bacterial cells, separated by reversed-phase liquid chromatography and mass analyzed. At the end of the chromatography run, the uncharged masses of the multiply charged proteins were determined via automated software routines. The resulting data provided an accurate mass expression profile of the proteins found in the individual strains. From the individual expression profiles, it was possible to identify unique proteins corresponding to strains with thermal resistance. One protein found only in the thermal tolerant strains was sequenced and identified as homologous to a hypothetical protein found in the thermal tolerant bacteria, Methylobacillus flagellatus KT. The protein sequence of this protein was then used to reverse-engineer PCR primers for the gene sequence associated with the protein. In all cases, only thermal tolerant strains of E. sakazakii produced amplified PCR products, demonstrating the specificity of this biomarker.

PMID:
16196092
DOI:
10.1002/pmic.200401263
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center