Format

Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2006 Jan;147(1):283-94. Epub 2005 Sep 29.

Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus.

Author information

1
Netherlands Institute for Brain Research, Meibergdreef 33, Amsterdam, The Netherlands. c.yi@nih.knaw.nl

Abstract

The arcuate nucleus (ARC) is crucial for the maintenance of energy homeostasis as an integrator of long- and short-term hunger and satiety signals. The expression of receptors for metabolic hormones, such as insulin, leptin, and ghrelin, allows ARC to sense information from the periphery and signal it to the central nervous system. The ventromedial ARC (vmARC) mainly comprises orexigenic neuropeptide agouti-related peptide and neuropeptide Y neurons, which are sensitive to circulating signals. To investigate neural connections of vmARC within the central nervous system, we injected the neuronal tracer cholera toxin B into vmARC. Due to variation of injection sites, tracer was also injected into the subependymal layer of the median eminence (seME), which showed similar projection patterns as the vmARC. We propose that the vmARC forms a complex with the seME, their reciprocal connections with viscerosensory areas in brain stem, and other circumventricular organs, suggesting the exchange of metabolic and circulating information. For the first time, the vmARC-seME was shown to have reciprocal interaction with the suprachiasmatic nucleus (SCN). Activation of vmARC neurons by systemic administration of the ghrelin mimetic GH-releasing peptide-6 combined with SCN tracing showed vmARC neurons to transmit feeding related signals to the SCN. The functionality of this pathway was demonstrated by systemic injection of GH-releasing peptide-6, which induced Fos in the vmARC and resulted in a reduction of about 40% of early daytime Fos immunoreactivity in the SCN. This observation suggests an anatomical and functional pathway for peripheral hormonal feedback to the hypothalamus, which may serve to modulate the activity of the SCN.

PMID:
16195398
DOI:
10.1210/en.2005-1051
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center