Send to

Choose Destination
Int J Biochem Cell Biol. 2006 Feb;38(2):196-208. Epub 2005 Sep 15.

CDK1-cyclin B1 mediates the inhibition of proliferation induced by omega-3 fatty acids in MDA-MB-231 breast cancer cells.

Author information

Inserm, E 0211, Tours, F-37000, France; Université François-Rabelais de Tours, Tours, F-37000, France.


Long-chain omega-3 polyunsaturated fatty acids are thought to inhibit the development of breast cancer. We investigated the effects of docosahexaenoic and eicosapentaenoic acids on the proliferation of MDA-MB-231 human mammary epithelial cells. Both docosahexaenoic and eicosapentaenoic acids decreased cell growth with a higher efficiency for docosahexaenoic acid (87% at 100 microM versus 74% for eicosapentaenoic acid). The effect on specific cell cycle phases was studied. G2/M duration was markedly increased by docosahexaenoic and by eicosapentaenoic acids (respectively by more than seven- and six-fold at 50 microM) when cells were synchronized at the G1/S boundary and released in the cell cycle. In contrast, there was no alteration of G1 or S phases. The expression of cyclin A, cyclin B1 and cyclin-dependent kinase 1, the regulators required for the progression from G2 to mitosis, were all decreased by these fatty acids (western blot). Since omega-3 fatty acids had no effect on the S phase, thus ruling out an involvement of cyclin A in their anti-proliferative effect, we examined whether the regulation of the cyclin-dependent kinase 1-cyclin B1 complex was altered. Upon omega-3 fatty acids treatment, cyclin B1 phosphorylation was inhibited and the expression of the cell division cycle 25C phosphatase, which dephosphorylates cyclin-dependent kinase 1, was decreased. We conclude that the anti-proliferative effect of omega-3 fatty acids occurs via the regulation of the cyclin-dependent kinase 1-cyclin B1 complex.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center