Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2005 Sep 1;39(17):6616-23.

Changes in zinc speciation in field soil after contamination with zinc oxide.

Author information

1
Institute of Terrestrial Ecology, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland. voegelin@env.ethz.ch

Abstract

Recent studies on the speciation of Zn in contaminated soils confirmed the formation of Zn-layered double hydroxide (LDH) and Zn-phyllosilicate phases. However, no information on the kinetics of the formation of those phases under field conditions is currently available. In the present study, the transformation of Zn in a field soil artificially contaminated with ZnO containing filter dust from a brass foundry was monitored during 4 years using extended X-ray absorption fine structure (EXAFS) spectroscopy. Soil sections were studied by micro-X-ray fluorescence (micro-XRF) and micro-EXAFS spectroscopy. EXAFS spectra were analyzed by principal component analysis (PCA) and linear combination fitting (LCF). The results show that ZnO dissolved within 9 months and that half of the total Zn reprecipitated. The precipitate was mainly of the Zn-LDH type (>75%). Only a minor fraction (<25%) may be of Zn-phyllosilicate type. The remaining Zn was adsorbed to soil organic and inorganic particles. No significant changes in Zn speciation occurred from 9 to 47 months after the contamination. Thermodynamic calculations show that both Zn-LDH and Zn-phyllosilicate may form in the presence of ZnO but that the formation of Zn-phyllosilicate would be thermodynamically favored. Thus, the dominance of Zn-LDH found by spectroscopy suggests that the formation of the Zn precipitates was not solely controlled bythermodynamics but also contained a kinetic component. The rate-limiting step could be the supply of Al and Si from soil minerals to the Zn-rich solutions around dissolving ZnO grains.

PMID:
16190219
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center