Format

Send to

Choose Destination
J Zhejiang Univ Sci B. 2005 Oct;6(10):961-73.

Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm.

Author information

1
National Laboratory of Industrial Control Technology, Institute of Modern Control Engineering, Zhejiang University, Hangzhou 310027, China. ymao@iipc.zju.edu.cn

Abstract

In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear statistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two representative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method performs well in selecting genes and achieves high classification accuracies with these genes.

PMID:
16187409
PMCID:
PMC1390438
DOI:
10.1631/jzus.2005.B0961
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Zhejiang University Press Icon for PubMed Central
Loading ...
Support Center